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Abstract

A Monte Carlo program to simulate muon jonization cooling is outlined. A Vavilov-type distribution to represent
restricted ionization energy losses is derived. Above the restriction threshold pe scattering is treated event-by-event.
Likewise p-nucleus clastic scattering is simulated by a Gaussian below some angular threshold and treated individually
above it. Other processes included are: incoherent pp scattering with nuclear protons, bremsstrahlung, pair production, and
deep inelastic nuclear scattering. A small sample of results cbtained with the code is included.

1. Introduction

Ionization cooling of muons is ofien mentioned in
connection with muon storage rings, which — of late —
have enjoyed considerable interest as an alternative to high
energy ee linear colliders. For a review of the subject and
further references, see Refs. [1,2]. Briefly, the muon beam
is recirculated through a cooling target while an RF field
makes up for average energy lost in the target. This acts on
both transverse and longitudinal phase space. Muons lose
transverse as well as longitudinal momentum in the target
while only the latter is restored by the RF thus resulting in
a net fransverse phase space reduction. Other processes
which occur in the target — principally multiple Coulomb
scattering — counteract the cooling and must be included
in the analysis. Loggitudinally, cooling is said to take
place when the muon energy is in the ““relativistic rise’
regime of the dE/dx vs. E curve since there the more
energetic muons suffer a larger energy loss. But this is true
only in the mean. Typically, the spread in energy loss
incurred traversing a target far exceeds any cooling achiev-
able from the difference in dE/dx. In fact, most of the
relativistic rise in dE/dx is due to the concomitant in-
crease in the maximum energy which can be imparted to
an atomic ¢, Thus the extra energy loss is due to rela-
tively large energy transfers which may well cause net
heating or even removal of the muon from the beam. This
depends on muon energy as well as on initial and (desired)
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final longitudinal phase space. More promising is the
proposal to place a wedge-shaped cooling target in a
region of high momentum dispersion so that the more
energetic muons traverse a thicker target and thus lose
more energy. Like in the transverse case, longitudinal
heating due to fluctuations in iomization energy loss and
other processes occurs in the target and shouid be incorpo-
rated in the simulation.

Analyses of cooling, such as Ref. [2], use a differential
equation to describe the average change in emittance —
separately for iransverse and longitudinal phase space.
Clearly some detail about the distribution in phase space is
desirable. Correlations between transverse and longitudinal
degprees of freedom are also expected to be present. More-
ovet, beam loss in a cooling ring is a first passage
problem, i.e., a muon experiencing a large enough energy
loss or angular deflection leaves permanently its RF bucket
or the admittance of the ring — without prospect of
rejoining the beam by means of some subsequent fluctua-
tion. These effects are disregarded in the differential equa-
tion approach. In addition there are other processes to be
considered: incoherent nuclear scattering, bremsstrahlung,
pair production, and nuclear interaction of muons — alt of
which increase in importance with energy. Typically, these
relatively rare processes cause large energy losses and are
therefore best treated as individual events. These are the
key concerns addressed in this note and which form the
basis of a Monte Carlo simulation program (SIMUCOOL).

In Section 2 the treatment of ionization losses in the
simulation is described in some detail. This may be of
interest for applications other than ionization cooling.
Coulomb scattering is the subject of Section 3. The re-
maining processes considered are relegated to Section 4.
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Some results of a rather general nature on muon cooling
are presented in Section 5 along with 2 small sample of
results from ihe program but without launching into a
systematic investigation of the subject, Conclwding re-
marks are in Section 6.

2. Ionization loss

This section arrives at the formulae necessary to treat
ionization losses in a Monte Carlo simulation. Some modi-
fications to commonly used energy loss distributions are
described which 1) make them specific to muons by use of
Bhabha’s scattering law for spin (J) =3} particles on
electrons and 2} allow introduction of a restriction thresh-
old of the energy loss in a single collision leaving larger
losses to be treated as individual events and thus incorpo-
rate energy—angle correlations into the simulation. In con-
nection with this last point it should be remembered that
Coulomb scattering off nuclei is a larger source of angular
dispersion than that off atomic electrons and the nuclear
part is essentially uncorrelated with energy loss. Nonethe-

less, an accurate description of the phase space should
include correlations present in the e part.

2.1. Vavilov's distribution for J = £

The distribution of ionization energy loss of a high
energy particle traversing a target was first derived by
Landau [2]. Specifically, Landau assumes that the probabil-
ity of an energy loss, e, in a single collision, follows an
€ % law and that total energy loss is small compared to
€0 (OT that €., — ). Vavilov [4] refined Landau’s
procedure by including the (kinematically allowed) maxi-
mum energy loss in the derivation and adopting a more
accurate € 2(1 — B%/e,,, ) energy loss law, with 8 —
as usual — the velocity in units of c. One price to pay for
these refinements is that, whereas the Landau distribution
can be 1epresented by a single universal curve, Vavilov’s
depends on two parameterss 8 and s = 0.300465
xm Z/( B A€, } whete the latter is primarily a measure
of target thickness, x (in g cm™?). Tables of Vavilov's
distribution are presented in Ref. [5]. Other modifications
to the formulae of Landau and Vavilov are necessary for
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Fig. 1. Comparison of Vavilov distributions for  =0and J = 1/2 for 8 = 1 and for different values of «.
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very thin targets [6] but these can presumably be neglected
in the present context.

The energy loss law assumed by Vavilov is correct for
J = 0 particles. For J = ; particles — such as muons — it
becomes [7]

€ 2
P(E)ae"z[l—BZK'F%(EiU)]a (1)

AX

where E,, is the total energy of the incident particle. It is a
simple matter to repeat Vavilov’s procedure with Bhabha's
formula which vields {in the notation of Ref. [4}

1 @
A= —— {1+ B3C-R* /2y xF,
fx, )= e f e
Xoos( yA; + kF,) dy, )

where 4 means total energy loss in the sample and

R? sin y

Fy=p*[n y—Ci(»)] —cos y=y Si(y) + — =
(3)
AI—A—Z—-K(1+{32—C—R—2), (4)
€nax 4
Fy=y[In y—Ci (¥)] +sin y+ B*Si(y)
2
_R?l-—;:)osy )

Here R = ¢,,,,/E, while §i and Ci arc the sine and cosine
integrals and C is Euler’s constant. Setting R =0 corre-
sponds to Vavilov's expression and F, F,, A, revert to
f1» f2n Ay of Vavilov's paper. A, is related to Landan’s A
by

R2
A,_=K(:\+T+ln K]. (6)

Differences between J = 0 and } are not very large. Fig. 1
compares (in the manner of Ref. [4]) the quantity $—
K&, f plotted as a function of Landau’s A for 8=1
(which implies R =1} and for k =0.1, 1, and 10 [8). As
might be expected the J = ; distribution is slightly broad-
ened vis-a-vis J = 0,

2.2, Distribution for restricted loss

Pethaps more relevant to the present application than
specialization to J = 1 is the introduction into Eq. (2} of
an — essentially arbitrary — energy foss limit in a single
collison, €,. Losses below ¢, can then be included on a
statistical basis via a Vavilov-type distribution while those
above it are treated individually.

Again Vavilov’s procedure (for J = 1) is easily applied
to the restricted ionization loss case. All that is necessary
is to replace €, everywhere by €, except in Bhabha's

scattering law which is, of course, unaffected by introduc-
ing an arbitrary €. The result is

f(x, &) - Len(]+ﬁ25C—-R£ /2)}’” eI
0

TE,
Xcos{ y.%, + k¥F,) dy, (N
where
F,=B8[In y—Ci (y)]-cos y—~y Si(y)
R2 sin
L ®)
2 vy
A-4 R?
# = —xl1+8%8-c——1, )
€, 4
F,=y[ln y = Ci(y)] +sin y + 7§ Si(y)
R21—cos y o
2Ty (10)

Now R_= ¢ /E,, ZC is the average restricted energy loss
{below €, as in, e.g., Ref. (9]} and § = €./ €, Seiting
€, = €,,, leads back to Eq. (2). Setting R =0 yields
Vavilov’s {J = 0) distribution for restricted losses.

2.3. Implementation

It is evident that random selection of an energy loss in
a Monte Catlo simulation is not feasible by analytical
means, i.¢., by inverting Eq. (7). Even an accurate direct
numerical calculation of Eq. (7) requires significant com-
putation time. However the present application lends itself
to some simplifications. First, all muons in any given
cooling scenaric will have nearly the same §. As may be
verified, the Vavilov distribution is not very sensitive to
small changes in §. Therefore 8 may be considered
constant in any given simulation and fixed at, e.g, B
comresponding to the nominal muon energy. A second
simplification is use of a fixed steplength for muon trans-
port — which fixes « for a given material. If, as anticipi-
tated in a typical cooling scenario, a single target material
is used then a single (tabulated) distribution suffices to
treat the problem of ionization loss fluctuations. Use of a
fixed steplength entails some corrections for edge effects.
Needless to say, one can always resort to multiple tables
and interpolation between them for increased accuracy.

Integration of Eq. (7) requires some care. The cosine in
the integrand causes large cancellations after which a small
positive number remains. A sure-footed way o proceed is
to first locate the zeroes of the integrand (cosine) using
Newton's method and then to perform Romberg integra-
tion between the zerces as intermediate limits until the
contribution from a complete cycle of the cosine argument
falls below some small fraction of the cumulative total. .Z
of Bq. (9) is used as the variable of the distribution which
easily converts into an energy loss.
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The choice of e, is left free in the Monte Carlo
implementation, A smaller e, results in higher accuracy at
ihe expensc of longer computation times. Selection of «
larger than ¢, is made directly from Bhabha’s formula by
choosing from an € ? distribution between e, and €,,,
and taking account of the part of Eq. (1) in square brackets
by means of “‘rejection’’. Because pe scattering is essen-
tially a two-body process energy loss correlates uniquely
with angle acquired, viz., 8= 4/2m. e /p, in the small
angle approximation.

3. Coulomb scatfering

Counlomb scattering of muons can proceed coherently
— off the entire nucleus which remains in its ground state
—— or incoherently, where the muon scatters off an individ-
val nuclear proton which gets ejected or promoted to an
ungccupied state. Similar in spirit to the treatment of
ionization losses, below some cut-off angle coherent scat-
tering is treated as multiple scattering while for larger
angles it is simulated as complete individual events.
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3.1. Multiple Coulomb scattering

According to Ref. [10] the Gaussian approximation for
projected angles in multiple scattering holds quite well for
angles below about 2 — independent of target thickness.
For larger angles the Gaussian becomes quickly sub-
merged in the single scattering tail which suggests that 2o
is a reasonable choice for 6., the (spatial} cut-off angle,
ie, 6,=2Xx00192 /I/X,, where [ is a (fixed) step
length, and X,, is the radiation length of the material. For
spatial angles (6,) the Gaussian corresponds to an expo-
nential distribution in 6.

The introduction of 8, means a lower o compared with
the usually cited overall rms scattering angle, From Ref.
[11] one obtains

2
(82 = 4ﬁNAvaa1(Zz/A)lln(—§% + 1) - 1], (1)
H

where N,, is Avogadro’s number, p the density of the
material, o the fine-structure constant, and 8, = am,Z'/*
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Fig. 2. Number of events per cm with AE/E > 0,03, 0.1, and 0.3 in an individual collision for lithium target and for the indicated

mechanisms.
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is an effective lower angular limit based on screening of
the nuclear charge by atomic ¢lectrons.

3.2, Coherent

Above & the Rutherford scattering formula is used
directly. Spin corrections introduce a weak dependence on
nuclear species but are of even lesser importance here than
for energy loss off atomic e~ and can be neglected.
However, Rutherford's formula must be modified by a
form factor to suppress large momentum transfers (which
may break apart the nucleus and destroy the coherence). A
simple form factor [13] is applied: Fy = {1 + t/d)? where
d=0.164A7%/* Gev? and ¢ is the absolute value of the
4-momentum transfer. Monte Carlo implementation of this
process begins by choosing a random number of events
from a Poisson distribution based on the expected number
in a single step. For each event — if any — an angle
(> 8.) is selected from Rutherford’s formula while the

3.3. Incoherent

Muons can also interact (incoherently) with individual
protons inside the nucleus causing the struck proton to be
either ejected or promoted to an (umoccupied) higher en-
ergy level. The model is somewhat easier to state in terms
of momentum transfer rather than angle. In full, the basic
wp scattering law is given by the Rosesbluth formula [12).
However, since the nuclear model used here is rather crade
it makes more sense to again rely on Rutherford's formula
for (Z times) pp

do/dt=4nZ(a/t), (12)

modified by a proton form factor which damps high
momentum transfers that may be accompanied by particle
production (the latter is treated as a separate contribution,
see Section 4). From Ref. [13]:

1+ 7781
form factor is included by rejection. A (small) momentum Fo= g (13)
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with 7= I/4m]2,. The nucleus is approximated by a simple
Fermi gas of the constituent nucleons and a struck protor
must acquire a final momentum larger than the Fermi
momentum for the collision to be allowed. On kinematical
grounds the energy transfer to the proton is required 1o be
in excess of &, which corresponds to the first excited
level of the target nucleus. This minimum transfer also
assigns a convenient upper limit of dnZa?/1_, to the
total cross section, where £, is approximated by 2m &,
its value for a proton at rest. Cuts on final momentum and
effects of the proton form factor are simulated by rejection.
Experimental values of &,,, are provided for a few com-
monly used target nuclei with a 1 MeV default value
elsewhere. The total cross section is small enough that one
can safely neglect multiple pp scaiterings in a single
nuclear encounter.

When an event occurs on the basis of the above cross
section, the algorithm proceeds by i) selecting a Fermi
momentusm for the proton partner — but with only | z,|
determined at this point. The sign of p, is randomly
assigned according to the flux factor (E — p,)/2E which
favors ‘‘head-on’ over “‘rear-end”’ collisions [14]. i) A
value for £ = ¢, is then selected and tested by comparing
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a uniform random number vs. the proton form factor. If
larger, the entire event is rejected. If smaller, i) final
momenta are determined in the wp center of mass and
transformed back to the lab. Finally, iv) it is determined if
the struck proton emerges above the Fermi sea. If not, the
event is scrapped.

While refinements are obviously possible, see e.g. Ref.
[15], such a model appears to describe quasi-elastic e -
nucleus collisions quite well zven for light nuclei [14].

4. Other processes

Three more processes are included which are important
mainly ai higher energies: bremsstrahlung, direct pair pro-
duction, and deep inelastic nuclear interactions by the
muons., All are fairly ‘““hard’’ processes in which a muon
typically loses considerable energy making them poten-
tially important for the present application. The procedures
followed for each process are those described in some
detail in Ref. [16] Briefly, energy loss is determined
randomly from an empirical function which represents a fit
to results of more complicated ab initio calculations. For a
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Fig. 4. Total number of events per cm with AE /E > 0.03 and 0.3 in an individual collision for various targets.



A. Van Ginneken / Nucl. Instr. and Meth. in Phys. Res. A 362 (1995) 213-223 219

given energy loss the rms angle, {82)"/?, is found from
another empirical formula which aiso approximates more
accurate calcuiations. A random angle is then selected
from a Gaussizn with zero mean and o = (#%)'/%, This
scheme is perhaps easier to justify for muon shielding
calculations for which it is intended but it is adopted here
as well. The angles incurred tend to be small compared
with Coulomb scattering and — at least to first order —
some correlation between angle and energy loss is kept so
that no large etror is expected as a result of adopting this
procedure.

5. Results

This section aims te provide a few results of the
SIMUCOQL model, mostly by way of illustration. There
are oo many parameters to attempt any type of systematic
coverage here: specification of the initial muon beam in
6-D phase space, latlice of the cooling ring (or linac),
thickness (or description of more complicated geometry —
such as wedges) and composition of the target, its
location(s) in the cooling ring along with any electric or
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magnetic fields which may be present at the target loca-
tion. One must also specify how and where the restoring
momentum is delivered, what are the criteria for removal
from the beam as well as the number of turns over which
to cool. In any given application the choices are likely to
be considerably narrowed since many parameters will be
specified or at least delimited by other considerations.
One set of results which is generally useful is the
expected number of events per unit length of target mate-
rial in which an energy loss or angular threshold is ex-
ceeded in a single collision. This puts a lower limit on the
number of particles acquiring such an energy loss or
angular divergence since others may do so as a result of
multiple encounters. Fig. 2 shows the number of events
with AE/E above 0.03, 0.1, and 0.3 for a lithium target
for each contributing mechanism as a function of muon
energy. Fig. 3 is the corresponding plots for tungsten. Fig.
4 displays the fotel number of such events for four target
materials. The double hump for A E /E > 0.3 reflects peaks
in the energy dependence of deep inelastic nuclear scatter-
ing and large angle scattering off atomic e, whereas the
latter dominates completely for AE/E < 0.03. In a similar
vein, Fig. 5 shows total number of events per cm of target
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Fig, 5. Total number of events per em with 4 > 0.01 and 0.05 in an individual collision for various targets.
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with A8 above 0.01 and 0.05 rad as a function of energy
for four materials. Bremsstrahlung, pair production, and
deep inelastic scattering are omitted from consideration for
these plots. These are not expected to make a significant
contribution. As mentioned in Section 4 these are treated
in the simulation using the Gaussian approximation which
would be unsuitable for inclusion in Fig. 5, i.e., on a single
event basis.

By way of example, some results are presented of a
simulation on a sample of 2500 muons of 1 GeV recircu-
lating through a 1 cm thick beryllium target. The initial
phase space is taken to be biGaussian both in x, x* and in
y, ¥ with (nominal} transverse emittances €, =€, =107*
and with 8, =8 =1 cm. Panticles with x, ' (y, ¥')
above 3¢ are excluded (which reduces initial emittances
by about 0.15). The longitudinal emitiance is represented
by a uniformly populated ellipse with axes Ap/p= +0.1
and Ad = +0.35 rad. Before each traversal of the target
the phase space distributions are rotated (at some rate out
of tune with the rotation around the ring). After each
traversal the average dE/dx for collision losses corre-
sponding to the nominal muon energy is restored to the
muon along the beam direction. Muons which acquire an

A. Van Ginneken / Nucl. Instr. and Meth. in Phys. Res. A 362 (1995) 213-223

emittance in excess of swice the initial one (either longitu-
dinally or in one of the transverse planes) are dropped
from the simulation. Fig. 6 shows (x, y combined) trans-
verse phase space progression with number of traversals.
Cooling is clearly observed. For comparison, using Neuf-
fer's formula [4], the equilibrium emittance is 1.67 X 1073
— or 0.196 on a relative basis — indicating good agree-
ment for transverse phase space. Fig. 7 is the correspond-
ing result for longitudinal space where some **heating’’ is
equally obvious which strongly suggests thal most of the
lost muons exit longitudinally.

Fig. 8 presents the Vavilov (J = ) distribution for 0.5
and 055 GeV/c muons traversing a 1 cm beryllium
target. The ‘“knee’’ around €, is quite noticeable and is
peculiar to the J = § type. Also in Fig. 8 is [& €(fyss —
fo.s) d€ as a measure of how the (cumulative) difference in
energy loss is distributed. As indicated, the median occurs
close to 4 = 0,014 GeV — well outside the peak. There-
fore most of the difference in { 4> (which amounts to only
33 keV) is due to relatively rare events while some heating
is expected with each traversal. As an estimate of the latter
consider the case of two muons (or beams) of 0.5 and 0.55
GeV /c repeatedly traversing a 1 cm beryllium target with
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enetgy restoration. Ignoring all processes other than energy
loss off atomic e”, this is equivalent to increasing target
thickness while shifting the ordinate { A} by the appropriate
average energy loss. Fig. 9 shows the distributions after 5,
10, and 25 turns for mono-energetic beams of 0.5 and 0.55
GeV /c. These must yet be folded by the initial momentum
distribution of the beam as done in a Monte Carlo simula-
tion. Resulls of the latter also benefit from including other
significant processes as well as the first passage effect
which becomes important when the energy spread ap-
proaches that which can be accommodated by the RF.

6. Concluding remarks

When the simulation is run neglecting all processes
except multiple Coulomb scattering and with constant
energy loss replenished along the beam direction, results
for transverse emittance essentially confirm the conclu-
sions of Ref, [2]: the difference between initial and equilib-
rium emittance decays exponentially with number of
traversals and with the decay constant proportional 1o the
fractional energy loss per traversal.

Matte:s become more complicated when ather pro-
cesses are included and limits are imposed on both longitu-
dinal and transverse phase space. In transverse phase space
the picture remains by and large correct but net longitudi-
nal heating results in the example. Note that in Fig. 7 the
stated longitudinal emittance growth is considerably biased
downward by excluding muons with emittances larger than
twice the initial one. However, simply removing such
exclusionaty limits appears even less useful because it is
unrealistic to expect particles at a large emittance to
remain with the beam and also because a few ‘‘outliers’’
can easily distort statistics such as the average emittance
— particularly in a relatively small sample. A downward
bias is expected to be present in the transverse case as well
since some particles may be lost by exiting the transverse
phase space. However, judging from Fig, 6 this bias
appears to be minimal. These results thus tend to confirm
the reservations expressed in the introduction about longi-
tudinal cooling via the relativistic dE/dx rise and it
appears that one must resort t0 wedges or more compli-
cated geometries to do the job. In general, the relation
between muon enetgy and cooling efficiency appears to be
rather complex. ““Straggling’’ increases with €,,, which
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in tyrn increases rapidiy with p; (roughly quadratically in
the few-GeV region [9]) thus favering lower muon ener-
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A copy of SIMUCOOL is available from the author at
the above address or via e-mail at vangin@fnalv.fnal.gov.

gies. However, one wmust clearly stay well above py = 0.3
GeV /¢ where dE/dx is minimum. Also at these lower
momenta thinner cooling targets are indicated and muon
decay becomes more probable. The information in Figs.
2-5 is also relevant in this regard. The above complica-
tions do not necessarily detract from the merits of ioniza-
tion cooling but it appears that care must be taken in
optimizing the available parameters 1o achieve worthwhile
reductions in phase space.
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